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Abstract: The model proposed in this paper has been thought to be used in large-scale assessment tests designed 
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I. Introduction 
In admission tests of some universities, it is common to split the test into several subtests. Each subtest is 

designed to measure a main latent trait. For this type of tests, there are at least three estimation procedures that are 

used, which are described as follows. The first procedure consists in the estimation of the parameters of each 

subtest separately, using unidimensional item response theory (UIRT) models. A unidimensional latent trait is 

estimated for each examinee from each subtest. If a global scale is required, the unidimensional latent traits are 

standardized and an average is computed. This average is a global synthetic trait. 

The second procedure is based on the use of a multidimensional item response theory (MIRT) model, (1; 

2; 3). This procedure requires the previous specification of the dimension of the latent trait space. In this 

procedure, the covariance matrix of the latent trait vector may be estimated. To estimate the latent trait measured 

by each subtest, a reference direction is calculated for each subtest. The reference directions of the subtests are 

computed from the directions of the items belonging to each subtest. Then, a composite is computed for each 

subtest. Each component of the latent trait vector may not have a direct interpretation. If a unidimensional global 

measure is required, the reference composite of the test is computed, (4). 

The third procedure is based on the use of a simple structure model, called multi-unidimensional model. 

In this case, each subtest is modeled as a unidimensional test and a latent trait vector is estimated. Each component 

of such vector is the unidimensional latent trait that is measured by a subtest. See, for example, (5; 6; 7). 

In this paper we introduce the Multiple Subtest MIRT (MSMIRT) model. The model is proposed to be 

used in large scale tests which include multiple subtests. It is assumed that each subtest measures essentially a 

unidimensional latent trait and that the dimension of the latent trait space is at most the number of subtests. The 

paper is organized as follows. In section 2 we review the equivalence between the MIRT models and the Factor 

Analysis models; section 3 is a discusion about the concept of dimension; we distinguish between the dimension 

of a test and the dimension of the data; section 4 is an introduction to the concept of composite; this concept is 

required to obtain the score of each subtest; section 5 presents the proposed model, including the main aspects of 

the estimation procedure; section 6 is the application of the model to the admission test that was ran in Universidad 

Nacional de Colombia in the second semester of 2009; finally, section 7 is the discussion about the main results of 

the paper. 

 

II. Equivalence of the MIRT model and the Factor Analysis Model 
In this section we introduce the equivalence between the compensatory MIRT models and the Factor 

Analysis models. We show that the Bayesian techique of augmented variables common in estimation procedures 

of the parameters of MIRT models uses some ideas derived from this equivalence. 

Let us assume that we have a test with K  dichotomous items which is responded by N  examinees. 

Let us consider a classical two parameter normal ogive MIRT model. The model is specified by the probability of 

success of examinee i  to item j , given by 

 

 ),(=),,|1=( ji

t

jjijijYP   θαθα  (1) 

 where ijY  is the random variables which represents the response of examinee i  to item j , 

t

jdjj aa ),,(= 1 α  is a vector of slopes of item j , 
t

idii ),,(= 1  θ  is the latent trait vector of 
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examinee i , j  is an intercept parameter associated to the difficulty of item j , and d  is the dimension of the 

latent trait vector, (1). It is assumed that the θ -vectors are a sample from a random vector Θ  that has normal 

distribution ),( Σ0dN , in which the diagonal elements of Σ  are 1. The latent trait space is the Euclidean space 

dR . The value d  is called the dimension of the latent trait space. We adopt this definition for the MSMIRT 

model that is introduced in this paper, because we propose a special kind of MIRT model.  The response pattern 

of an examinee is an element of 
K{0,1} . Vector iθ  has a reduced dimension Kd < . In general the latent trait 

vector of an examinee is a representation of his/her response pattern in an Euclidean space of reduced dimension. 

The reduction of the dimension can be thought in terms of a factorial analysis. This is not new. When (8) 

proposed the first formal method to estimate the parameters in a MIRT model, they supposed that the responses of 

the examinees could be modeled by the introduction of continuous latent variables ijZ  that govern the response 

process. 

(9) proposed the factor analysis of dichotomized variables based on the same latent variables used by (8). 

(10)stated that the factor analysis of dichotomized variables is equivalent to the item response theory. They used in 

their proof the same continuous latent variables ijZ . Additionally, (11;12) used this approach to propose a 

framework for the multidimensional item response theory. 

In the Bayesian field the variables ijZ  are called augmented variables, and they are introduced to build 

Gibbs samplers that are easy to implement. In the field of the item response theory, this type of variables was 

introduced by (13). Similar approaches to estimate the parameters of MIRT models have been used by (14), (15) , 

(6), and other authors. In this work, the variables ijZ  are used in the estimation procedure. 

The use of latent continuous variables in the classical item response theory is different from the use in the 

Bayesian field. However, the continuous latent variables ijZ  are essentially the same. This characteristic of the 

latent variables is exploited in this work. For fixed values of ij θα , , and j . Let ijZ  be the random variable 

defined as 

 

 ).,N(ibution has distre,eγθ=Z ijijji

t

jij 10   α  (2) 

 

Thus, we have that 

 

 ))((1=),,|0( ji

t

jijjijij ePZP   θαθα  

 )(=)(1= ji

t

jji

t

j   θαθα  

 ).,,|1=(= jijijYP θα  (3) 

 

Hence, the variable 1=ijY  if 0>ijZ  and 0=ijY  if 0ijZ . So the values of ijY  are determined by the 

values of ijZ . In other words, the latent continuous variable ijZ  governs the response process of variable ijY . 

Let dKA  be the matrix whose rows are the slope vectors jα . Let Θ  be a random vector distribute as 

),( Σ0dN . The latent traits of the examinees are considered samples from vector Θ . Let e  be a random 

vector distributed as ),( KKN I0 , where KI  represents the identity matrix of size K . It is assumed that Θ  

and e  are independent. Let γ  be the vector of intercepts in the MIRT model. Let 
t

KZZ ),,(= 1 Z  be the 

random vector defined as 

 

 .= eγAΘZ   (4) 

 

 Then, 
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and  

 

  

 

Let 
t

Kyy ),,(= 1 y  be the random vector representing any response pattern. Then, for Kj ,1,=   we 

have that 

 

   dzzZp j

t

jj }))(1/2({exp
2

1
=0>]|[ 2

0







θαθ  

 )(= j

t

j  θα  

 ),,|1=(= jjjyP θα  (7) 

 

Consequently, the random response pattern y  is governed by the random vector vector Z , i.e., the 

particular values of a response pattern are determined by the values of the random vector Z . Furthermore, 

equation (4) represents a factorial analysis model with the nice property that the perturbation term e  has 

distribution ),( KKN I0 . This perturbation term is the Bayesian residual in the Bayesian item response theory 

models, (16). 

Equation (4) has some important consequences. The equation expresses a relation between the classical 

models of the item response theory, the factorial analysis of dichotomized variables, and the technique of 

augmented variables used in some Bayesian procedures of estimation in the item response theory, (13). The 

dimension of the latent trait space may be determined as the minimum number of factors required to have a good 

representation of the random vector Z . Obviously, this is only a theoretical construction because the variables 

ijZ  cannot be measured directly. However, they can be predicted using a Gibbs sampler algorithm. In this work, 

a data augmentation Gibbs sampler (DAGS) algorithm was implemented to estimate the parameters of the 

MSMIRT model; in the algorithm, the variables ijZ  were used, (4).  In the classical item response theory, one 

of the more used strategies to determine the dimension of the latent trait space is through the eigenvalue structure 

of the tetrachoric correlation matrix. The tetrachoric correlation between two binary variables is the Person 

correlation one would obtain if the two variables were measured continuously. See for example (17). Some 

procedures have been developed to estimate the tetrachoric correlations. A recent function to estimate the 

tetrachoric correlations can be found in package polycor, (18), for R (2016). However, the estimated matrix of the 

sample tetrachoric correlation obtained from the classical algorithms is often nonpositive definite, (19). 

We propose the following strategy to detect the dimension of the latent trait space. First, identify the 

dimension of the latent trait space through a principal component analysis; second, confirm the dimension of the 

space, based on the eigenvalue structure of the tetrachoric correlation matrix. This matrix can be estimated from 

the variables ijZ , which can be predicted inside of the DAGS algorithm. For details, see (4). 

 

III. A discussion about the concept of dimension 
In the item response theory, an important amount of research has been devoted to determine whether the 

assumption of unidimensionality is reasonable, see, for example(20; 21), (22), (23), 

(24), (25), (26), (27), (28), (29). 

The assumption of unidimensionality is a strong simplification of the reality. Unidimensionality can only 

be approximated, (30). (31) argues that related problems of dimensionality and bias of items are approached in an 

arbitrary and oversimplified fashion. Humphreys pointed out that a dominant attribute (i.e., dominant dimension) 

results from an attribute overlapping many items and asserts that attributes common to relatively few items or 

even unique to individual items are unavoidable and indeed are not detrimental to the measurement of a dominant 

dimension. In the same way, (11) argues the existence of "minor components" in factor analytic modeling of test 

data, and the existence of multiple determinants, which are common to some items. 

According to (3), dimensionality is a property of the sample of examinees’ latent traits that take a test, 

and it is not a property of the test itself. A common definition of the dimensionality is: the minimum dimension of 

the ability space required to obtain conditional independence. The dimensions required to have conditional 

independence in a test can change from a population to another. Reckase states that the number of dimensions 

needed to model accurately the relationships in the item response matrix dependent on two aspects of the data 

collection process: the number of dimensions on which the people taking the test differ and the number of 
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dimensions on which test items are sensitive to differences. For example, in extreme cases, it is possible to 

imagine a group of individuals, which have been carefully selected to be identical on all dimensions except one. In 

this hypothetical case, the item response matrix that results from administering the test to them can represent 

differences on only one dimension. On the other hand, if the set of test items used are only sensitive to differences 

along one of the dimensions of variability of the examinee population, the resulting data will be essentially 

unidimensional. 

(30), introduced the concept of essential unidimensionality. The main idea of Stout is that even though 

the ability space is multidimensional, the set of items used in a test may be sensitive mainly to differences along 

one of the dimensions, and the statistical tests to asses the unidimensionalidad can reject that assumption. He 

proposed to replace the usual assumption of unidimensionality by a weaker and arguably more appropriate 

statistically testable assumption of essential unidimensionality. Essential unidimensionality implies the existence 

of a "unique" unidimensional latent ability. To test essential unidimensionality, (29) developed the DIMTEST 

procedure. 

The concept of essential unidimensional can be generalized to essential dimensionality. Under this 

perspective, the items of a test can be grouped in clusters in such a way that the items in each cluster are sensitive 

mainly to differences along one direction in the latent trait space. In this case, the essential dimensions that are 

measured by the cluster of items are not necessarily orthogonal. Procustes methodology permits to build non 

orthogonal rotations onto the ability space, see, for example, (32). Such non orthogonal latent traits become 

orthogonal, through linear transformations that do not change the probability patterns, but changing the 

correlation of the latent traits. 

A more recent discussion about the concept of dimensionality in the item response theory is due to (33) 

and (34). (33) proved a result that he called the submodel theorem. The theorem states that, a multidimensional 

model which has a positive continuous item response function, is equivalent to some of its unidimensional 

submodels in the sense that, the multidimensional model and each one of those unidimensional submodels predict 

the same probability patterns. (34) reported experimental results in the same way, based on the use of 

nonparametric multidimensional scaling to synthesize a multidimensional model from several approximate 

one-dimensional models. 

 

IV. Composites of latent traits 
When the experts design a test with multiple subtests, their objective is the estimation the latent traits that 

are measured by each subtest. Hence, the design of the test explicitly leads to define a first concept of dimension. 

It is natural to define the dimension of a test as the number of subtests, or as the number of latent traits that the 

entire test attempts to measure. We adopt this definition. We call this latent traits as main latent traits. By 

definition the main latent traits have a direct interpretation derived from the design of the test. 

On the other hand, it is not realistic to assume that the dimension of the test coincides with the dimension 

of the data. The binary responses to the items can be considered as partial signs of the latent traits of the 

examinees. If a test has K  items, the response pattern of any examinee is a vector in the space 
K{0,1} . In a 

MIRT model we assume that the latent traits are points in a Euclidean space of dimension d , such that Kd <
. The components of a vector of latent traits will be called basic latent traits. The basic latent traits may not have a 

direct interpretation. 

Given a latent trait vector θ  and a unitary vector β , the scalar product θβ t
 is called a composition. Let j  

be the Euclidean norm of the vector jα , and let jjj /= αβ . According to previous section, the latent variable 

jZ  can be written as 

 

 ),ibution N( has distre,eγθβ=αZ jjj

t

jjj 10  (8) 

where jβ  is a unit vector called the direction of item j . (4) showed that the vector jβ  is the direction along 

which the item j  discriminates better. This means that the item j  discriminates better between the values of 

the synthetic latent trait given by the composite θβ t

j . 

According to (30), a test is essentially unidimensional if all of its items are sensitive, mainly to 

differences along one direction in the latent trait space. Clearly, if a test is essentially unidimensional, the direction 

vectors point in roughly the same direction. (35) define the reference direction of a cluster of items as the principal 

direction of the direction of the items in the cluster. They showed that the reference direction of a subtest defines 

the composite that is estimated if a UIRT model is used to fit the data of the subtest. 

Along the reference direction, the subtest discriminates better on average. Furthermore, if the test is 
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essentially unidimensional, a good unidimensional approximation of the multidimensional model can be obtained 

by replacing all the item directions with the reference direction of the test and making some changes in the item 

parameters. Consequently, if a test is essentially unidimensional there is a UIRT model that fit well the data, 

although the tests of unidimensionality can fail. In this work, we assume that the test is split into m  subtests. 

Furthermore, we assume that each subtest is essentially unidimensional, so each subtest is designed to measure a 

main latent trait. The main latent traits will be composties of basic latent traits. 

 

V. The Multiple Subtest MIRT model 
In this section, we introduce the nomenclature and the assumptions of the Multiple Subtests MIRT (MSMIRT) 

model: 

1.  The test is split into m  subtests. It is assumed that each subtest is essentially unidimensional. Hence, each 

subtest attempts to measure only one main latent trait. Each subtest has vK , items, mv ,1,=  , so the entire 

test has mKKKK  21=  items.  

2.  It is assumed that the basic latent traits of the examinees are a random sample drawn from a multivariate 

normal distribution. ),( Σ0dN , where Σ  is a correlation matrix, and md  .  

3.  The main latent traits of the examinees being measured by each subtest are composites of the basic latent trait 

vectors.  

4.  The link function is the standard normal ogive, denoted )(  

5.  Guessing parameters are not included.  

 

The j th item of subtest v  will be called item vj . The MSMIRT model is specified by the probability of 

success of examinee i  to item vj  given by 

 

 ),(=),,,|1=( vj

t

vvjvvjvjvijYP   ii θβθβ  (9) 

 

where vj  and vj  will be called respectively the slope (the discrimination) parameter and the intercept 

parameter of item vj . 
t

vdvv ),,(= 1  β  is a unit vector in the latent trait space that will be called the 

direction of subtest v  and 
t

idii ),,(= 1  θ  represents the vector of basic latent traits of examinee i . 

The classical difficulty parameter is given by vjvjvjb  /= . For ease, the item parameters of item vj  

will be denoted vjδ , that is, 
t

vjvjvj ),(= δ . The main latent trait measured by subtest v  is given by the 

composite θβ t

v , mv ,1,=  . The expression given by 

 

 ,= vj

t

vvjvj  θβ  (10) 

 will be called the linear latent predictor of the item vj . 

 

For the distribution of the latent trait vectors, other symmetrical distributions are possible like the 

multivariate t -student distribution. Recently, some authors have proposed asymmetric distributions as the 

multivariate skew normal and the multivariate skew t -student distributions, (36; 37), (38). In this work, we only 

consider the multivariate normal distribution. 

When the dimension of the latent trait coincides with the dimension of the test, the test will be called a simple 

structure test. In this case, the probability of success of examinee i  to item j  reduces to 

 

 ),(=),|1=( vjivvjivjvijYP  θδ  (11) 

because in that case all the subtest directions can be identified with the vectors of the canonical base of de 

Euclidean space 
dR , as we will see in the next sections. 

In the classical literature of MIRT models, the parameter vj  is called the multidimensional discrimination 

(MDISC) parameter, and the parameter vjb  is called the multidimensional difficulty parameter (MDIFF) 

parameter, (1; 3). 
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The logistic and the univariate standard normal cdf’s are the more extended links. However, recently, 

asymmetric links have been proposed as the univariate skew normal distribution and the univariate skew t
-student distribution, (37), (38). The normal ogive link function was selected in this work for several reasons that 

include the implementation of the data augmentation Gibbs sampler (DAGS), to estimate the parameters of the 

model. 

 

5.1  Identifiability of the MSMIRT model 

The MSMIRT model is not identifiable. To obtain an identifiable model, we note first that the vectors 

vβ  are the reference directions of the subtests, so they are unit vectors. However, this constraint is not sufficient 

to have an identifiable model. In this section, we propose two parameterizations, one of which permits a nice 

interpretation of the parameters, including the basic latent traits. The parameterizations are based on the 

relationship between the main and the basic latent traits. Let Θ
~

 be a 1m  random vector that represents the 

main latent traits of the test. Then, 

 

 11 =
~

 ddmm BΘ  (12) 

where B  is the matrix whose rows are the vectors vβ . The covariance matrix of vector Θ
~

 is given by 

 tB  ΣB=)Θ(
~

Cov  (13) 

 

Equation (12) represents the relationship between the basic latent traits and the main latent traits. From 

this equation, two parameterizations are considered. Without loss of generality, suppose that matrix Σ  is 

positive definite and that the first d  rows of matrix B  are linearly independent. Let 
1/2Σ  be the square root of 

matrix Σ . To state the first parameterization, we rewrite Θ
~

 as: 

 

   .=
~ 1/21/2 ΘΣBΣΘ 

 (14) 

 

Equation (14) implies that we can assume that Θ has distribution ),( ddN I0 . In this case, the basic 

latent traits are not correlated. In this parameterization, the matrix Σ  is the identity and consequently it is 

necessary to estimate the dm  components of the vβ  directions. 

The second parameterization is inferred as follows. Let B
~

 be the submatrix of B  that contains its first d  

rows. Then, Θ
~

 can also be written as 

 

   .~~
=

~ 1 ΘBBBΘ 
 (15) 

 

Equation (15) implies that the first d  reference directions are aligned with the coordinate axes. If the 

variance of the basic latent traits is fixed in 1, as usual, there are only 1)/2()(  ddddm  parameters 

to estimate. Those parameters correspond to the components of the reference directions that are not aligned with 

the coordinate axes and the non-diagonal elements of the correlation matrix. 

The second parameterization has some advantages. Firstly, there are fewer parameters to be estimated; 

secondly, the basic latent traits are directly the reference composite of the first d  subtests; thirdly, the coordinate 

axes are set in advance, so, identifiability problems caused by orthogonal transformations of the latent trait space 

are impossible. Furthermore, it is important to note that in the first parameterization the item directions have a 

better projection along the corresponding reference composite. Consequently, the values of the item parameters 

are closer to values of item parameters of the MIRT model, from which the MSMIRT model can be derived. 

In the implementation of the DAGS algorithm to estimate the parameters of the MSMIRT model, the second 

parameterization was used. In the next section, we show how to change from one parameterization to the other. 

 

5.2  Interchangeability between parameterizations 

In this section, it is shown how to change from the first parameterization to the second and vice versa. 

First, assume that the parameters of the first parameterization are available. This means that it was assumed that 

the latent trait vector has distribution ),( ddN I0 , and that the reference directions vβ , mv ,1,=   were 
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estimated. To obtain the parameters of the second parameterization, the following transformations are required: 

 

1.  Align the first d  reference vectors with the coordinate axes, using the equation (15). The reference vectors in 

the second parameterization are given by  

 .,1,=,
||

~
||

~

=
1

1
* mv

v

v
v 

BB

BB
B





 (16) 

 

where ||||   denotes the norm of a vector. This implies that in the second parameterization the  

first d  reference vectors are the vectors of the canonical base of 
dR .  

2.  The new covariance matrix is given by 
tBB

~~
.  

3.  The new slope parameters are given by  

 .,1,=||,
~

||= 1* mvvvjvj BB  (17) 

 

4.  The intercept parameters do not change.  

5.  The new latent trait vectors are given by θBθ
~

=*
.  

 

Now, suppose that the second parameterization is given. In this case, it is assumed that the latent trait vector has 

distribution ),( Σ0dN  and that the first d  reference directions were set to the canonical vectors of 
dR . To 

obtain the parameters of the first parameterization, the following transformations are required: 

 

1.  From equation (14), the first d  reference vectors are the rows of matrix 
1/2Σ . In general the new reference 

vectors are given by  

 .,1,=,
||||

=
1/2

1/2
* mvB

v

v
v 

BΣ

BΣ
 (18) 

 

2.  The new covariance matrix is dI .  

3.  The new slope parameters are given by  

 .,1,=||,||= 1/2* mvvvjvj BΣ  (19) 

 

4.  The intercept parameters do not change.  

5.  The new latent trait vectors are given by θΣθ 1/2* = 
.  

 

 

5.3  Estimation of the Parameters 

Let ),,|1=(= vjvivijvij YPp δβθ . Let dNθ  be the matrix of the latent traits of examinees in the 

sample. Let δ  be the vector of all item parameters of the test. Let dmβ  be the matrix of the m  reference 

directions of the subtests. Then, under the assumption of local independence, the likelihood function is given by: 

 

 .)(1=),,|(
1

1=1=1=

vij
y

vij

vij
y

vij

v
k

j

m

v

N

i

ppf


δβθy  (20) 

 

where vijy  is the observed response of examinee i  to item vj , and .][= KNijy y  

A data augmentation Gibbs sampler (DAGS) algorithm was developed to estimate jointly the item and the latent 

trait parameters. Following the strategy proposed by (13), we introduced the augmented variables  vijZ with 

distribution ,1)( vijN  , where vj

t

vvjvij  iθβ= . It is easy to show that if we define 1=vijY  if 0>vijZ  

and 0=vijY  if 0vijZ , then )(=),,|1=( vijvjvivijYP  βθ . 
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Prior distributions for the parameters were defined as follows. For the item parameters vj  and vj , the 

classical priors proposed in the literature were used. That is, we assume that )( vjp  has distribution

0)>((0,1) vjIN  and )( vjp   proportional to 1. Let us suppose that  Θ is distributed as ),( Σ0dN , where 

Σ  is a correlation matrix, with ones on the diagonal and correlation st  between s  and t , ts  . To 

model Σ  we introduce an unconstraint covariance matrix ][= stR  such that the covariance matrix Σ  can 

be obtained from R  using 

 

 .,= ts
ttss

st
st 




  (21) 

 

A noninformative prior that can be assumed for R  is the Jeffreys’ prior, which is proportional to 2

1

|)(| I , 

where )(I  is the expected Fisher information matrix of  , (39). In this work we used the Jeffreys’ prior, 

which in this case is proportional to 
1)/2(||  dR . Modeling the vectors vβ  is new in the item response theory. 

Let 
t

vdvv ),,(= 1  β . Two prior distributions are proposed. First the improper non-informative 

0)(
1=

 vk

d

k
I   and second, the informative truncate multivariate normal distribution 

0)(),(
1=

 vk

d

kd IN Tb , where T  is a diagonal matrix. We propose the hyperparameters d
d

1b
1

= , 

where d1  is the d dimensional vector with ones in all its components, and )
1

,,
1

(=
dd

diag T . In the 

simulations and in the real case the results were very similar with each one of the priors for the vβ . The joint 

posterior distribution of ),,,,( Σδβθ Z  is proportional to 

 

 ).()|()()(),,|()|( RΣθβδδβθZZy pppppf  (22) 

 

The full conditional distributions are derived in (4). The code of the DAGS algorithm can be found in the home 

page of the SICS Research Group:  

http://ciencias.bogota.unal.edu.co/departamentos/estadistica/investigacion/grupos-de-investigacion-departame

nto-estadistica/. 

 

5.4  Simulation 

To test the DAGS algortihm a test of size 100=K  was generated. The 100 items were divided in four 

clusters(subtests), each one with 25 items. That is, 25==== 4321 KKKK . It was assumed that the latent 

trait space had dimension 3=d . A sample of 5000 people was generated. The algorithm recovered the item 

parameters and the latent traits very good. For details see (4). 

 

VI. Application to a real case 
The data are from the admission test at the Universidad Nacional de Colombia, applied in the second 

semester of 2009. The sample size was N=5096. The test was taken by more than 35,000 people. There were seven 

types of tests, but the only difference between them was the order of the questions. The data correspond to the 

complete sample of one type. The test size was 113=K  with 5 subtests. The subtests were: textual analysis 

(Textual) with 15=1K  items, mathematics (Math) with 26=2K  items, natural sciences (Science) with 

29=3K  items, social sciences (Social) with 29=4K , and image analysis (Image) with 14=5K  items. 

 

6.1  Missing data 

In the test there were 1845 missing responses that correspond to 0.32%  of the responses. The data 

were first fitted using the Bayesian imputation procedure. Then we used the usual procedure that is to replace the 
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non-responses with 0. There were small differences in the estimations. Simulaton procedures showed that the 

parameters are better recovered when the imputation procedure is used than when the non-responses are replaced 

with 0. However, in this real case, there was an extreme case in which the examinee had 112 missing responses of 

the 113. From the Bayesian point of view, this is not a problem, and the DAGS algorithm worked well. However, 

we must be careful with the extreme cases, because in that cases the estimation of the latent traits of an examinee 

based solely on one, two, or very few responses is not consistent. Results completely different are obtained, 

depending if the only response is 1 or 0. Since our main goal is to illustrate the MSMIRT model, we finally 

decided to follow the usual procedure. So, we replaced the non-responses with 0. 

 

6.2  Preliminary analysis of the data 

To specify the MSMIRT model, the second parameterization is used. Then, it is necessary to state the 

dimension of the latent trait space, the number of clusters (subtests), and the main directions that will be aligned 

with the coordinate axes. In this case, and in similar situations, the clusters are predefined. If the number of 

clusters coincides with the dimension of the latent trait space, the model is of approximately simple structure, and 

the main directions are not necessary. Descriptive analysis suggests that the dimension of the latent trait space is 3. 

Additionally the results suggest to align the reference directions of the subtests Textual (axis 1), Math (axis 2), and 

Image (axis 3) with the coordinate axes. This configuration was adopted. 

 

6.3  Fitting the data 

Now, we review the parameters recovered by the DAGS algorithm. In the algorithm, the second 

parameterization of the model was used. In this case, we used a burning period of 5,000 iterations. After burning, 

we ran 10,000 iterations with a thin period of 1. That is, we obtained 10,000 iterations to compute the Bayesian 

estimations. To estimate the variance of the estimations, we used 100 batches of length 100. In all cases, the 

Bayesian estimator was the sample mean, because the mean and the median were very similar in all cases. 

 

6.3.1  Estimation of the reference direction of the subtests 

Table 1 contains the components of the subtest directions estimated by the DAGS algorithm. As 

mentioned before, the dimension of the latent trait space is 3. Let },,{ 321 eee  be the ordered canonical base of 

3R . The reference directions of Math, Textual, and Image subtests were aligned with coordinate axes 1, 2 and 3 

respectively, such that 11 = eβ , 22 = eβ , and 35 = eβ . The reference directions 3β  and 4β  corresponding 

to the Science and Social subtests were estimated. The complete subtest directions are given in table 2. These 

results imply that Science is basically a composition of the Math and, Textual latent traits with a little component 

of Image and that Social is basically equivalent to Textual, with a little component of Image. 

 

 
Table 1: Estimated parameters of the subtest directions. Data from Admission Test of U.N.C., 2009 

 

 
 Table 2: Estimated subtest directions. Data from Admission Test in U.N.C., 2009 

 

6.3.2  Estimation of the covariance matrix 

The covariance matrix that was estimated by the DAGS algorithm is given by 

 



A MIRT Model for Tests with Multiple Subtests 

DOI: 10.9790/7388-0606030720                          www.iosrjournals.org                       16 | Page 

 
 

 
Table 3: Estimated parameters of the covariance matrix. Data from Admission Test of U.N.C., 2009 

 

Table 3 shows the statistical information of the components of the covariance matrix estimated by the DAGS 

algorithm. From the covariance matrix estimated by the DAGS algorithm, we conclude that the main latent traits 

are highly correlated and therefore, the reference composite of the test is a good unidimensional synthesis of the 

latent trait vector. 

The subtest directions in the uncorrelated space (parameterization 1) are obtained from , 

after normalizing these vectors. The subtest directions in the uncorrelated space are shown in table 4. 

  

 
Table 4: Estimated subtest directions in the uncorrelated latent trait space. Data from Admission Testin U.N.C., 

2009 

 

Let B  be the matrix whose rows are the subtest directions shown in table 4. The reference direction of the entire 

test in the uncorrelated space was computed as the first eigenvalue of BBt
. That direction was given by 

 
   

6.3.3  Estimation of the item parameters 

Table 5 shows the estimations of some of the slope parameters and table 6 shows the estimations of the 

corresponding intercept parameters. In the tables, the items have their original identifier. The items of each subtest 

were the following: Textual 1-15, Math 16-41, Science 42-70, Social 71-99 and, Image 100-113. The slope 

parameters were small in general, including the first parameterization. Apparently, some of the items could be 

omitted from the test. However, this issue will not be discussed. 

 

 
Table 5: Some estimated slope parameters. Data from Admission Test of U.N.C., 2009 
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Table 6: Some estimated intercept parameters. Data from Admission Test of U.N.C., 2009 

 

6.3.4  Goodness of fit 

Some measures of goodness of fit of the model were computed inside the DAGS algorithm. For the 

complete details about goodness of fit, Bayesian latent residual and other Bayesian issues see (4). Let vijZ  be the 

underling latent continuous response of examinee i  to the j th item of subtest v . This is the augmented 

variable used in the DAGS algorithm. For any fixed linear latent predictor vij , the latent variable vijZ  is given 

by 

 

 (0,1).,= Nbutionhas distriZ vijvijvijij      (25) 

 

The Bayesian latent residual corresponding to the binary observation vijY  is defined as 

 

 .= vijvijvij Z    (26) 

 These Bayesian latent residuals are the basis to define the statistics to asses the fitting of the model to the data, 

(16). 

 

6.3.5  Outlier detection 

According to (16), an observation is considered an outlier if the absolute value of the residual is greater 

than some pre-specified value q  times the standard deviation. We used 2=q  and computed the posterior 

probability. The number of residuals with probability greater than 0.2 to be outliers was 2922 that correspond to 

(0.51%)  of the total of observations. Additionally, the number of residuals such 1.5|>| vije  was 8069  that 

correspond to (1.4%)  of the responses. Since this percent is less that 5%  there is no reason to concern, (16). 

 

6.3.6  Person Fit 

A measure to evaluate the fit of a response pattern of a person i  under the MSMIRT model based on the 

Bayesian latent residuals is given by 

 

 .=)(= 2

1=1=
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, vij
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vijvij
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j

m

v

ip ZX     (27) 

 Each Bayesian latent residual has standard normal distribution, and under the assumption of conditional 

independence the statistic 
2

,ipX  has a chi-square distribution with K  degrees of freedom. That distribution can 

be used as a reference distribution to evaluate the extremeness of the sum of square residuals. The corresponding 

posterior p -value is defined as 

 

 ,)|())(>(=)( 222

,0 iiiipKip dzyzpzXPXp   (28) 

 

where iy  represents the response pattern of a person i  and iz  the corresponding latent response pattern. The 

posterior p -value is computed at each step of the DAGS algorithm, and the mean is the estimate of the posterior 

p -value. The p-values in real case data were between 0.13 and 0.80.  
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6.3.7  Item Fit 

Similarly, an item fit statistic is defined as 

 

 ,=)(= 2
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vijvij

N

i

jitem ZX     (29) 

 

and the corresponding posterior p -value is defined as 

 

 ,)|())(>(=)( 222

,0 jjjjitemNvjitem dzyzpzXPXp   (30) 

 The p-values in real case data were between 0.48 and 0.52. 

 

VII. Discussion and conclusions 
In this paper we introduced the Multiple Subtests MIRT (MSMIRT) model. The model has been thought 

to be used in large-scale assessment tests designed explicitly to measure more than one latent trait. It was assumed 

that the tests are split into subtests and that each subtest is designed to measure mainly a unique unidimensional 

latent trait. 

A discussion about the concept of dimension in the item response theory was the central issue in the 

paper. (3) points out that the dimension of the latent trait space and the dimension of a test are different. According 

to Reckase, the dimension of the latent trait space is an underlying property of the examinees, while the dimension 

of the test is a design property of the test. Obviously, the latent trait space depends on the design of the test. When 

a test is designed to measure some specific latent traits, the examinees require certain abilities to answer the test 

successfully. However, the dimension of the ability space does not coincide necessarily with the number of latent 

traits that the test attempts to measure. 

The MSMIRT model is a multidimensional item response theory model in which the items have a cluster 

structure. The model is based on the assumption that the dimension of the latent trait space is smaller than the 

number of subtests (clusters) of the test. The MSMIRT model is equivalent to a factor analysis model of 

dichotomized variables,in which the factors are just the latent traits. The dimension of the test was defined as the 

number of clusters of the test, and the dimension of the latent trait space was defined as the number of factors of 

that model. Consequently, the dimension of the test is a design property while the dimension of the latent trait 

space is a characteristic of the response data. 

In the MSMIRT model, there are two types of latent traits that are considered: the main latent traits and 

the basic latent traits. The main latent traits correspond to those abilities that the test attempts to measure. Thus, 

the main latent traits are defined by the design of the test, and can be interpreted directly form the underlying 

theory that leads the test design. On the other hand, the basic abilities are the components of the latent trait vector 

of the examinees. In general, these latent traits are not interpretable directly. In the MSMIRT model, the main 

latent traits are linear combinations of the basic latent traits. 

We defined the concept of reference direction of a subtest as the direction along which the subtest 

discriminates better on average. The reference direction of the subtests are estimated directly in the MSMIRT 

model. This is an important characteristic of the MSMIRT model, because the main latent traits are just the 

reference composites of the subtests. This implies that basic and the main latent traits are estimated directly. 

Furthermore, the covariance matrix of the basic latent traits is also estimated. 

Two equivalent parameterizations were proposed for the model. In the first, it is assumed that the basic 

latent traits are uncorrelated, so any linear combination of them has the same scale. In this parameterization, the 

basic latent traits do not have a direct interpretation, and all the main latent traits that are measured by the test are 

linear combinations of the basic latent traits. 

To estimate the parameters of the model, the second parameterization of the model was adopted. 

Following this parameterization, some of the main latent traits that the test attempts to measure are identified with 

the coordinate axes of the latent trait space. The other latent traits can be described as combinations of the basic 

latent traits. This interpretation may be useful to the experts. 

A data augmentation Gibbs sampler (DAGS) algorithm was implemented to fit the MSMIRT model. The 

simulation results showed that the parameters are recovered well by the DAGS algorithm. 

To illustrate the use of the MSMIRT model, we utilized the response data of a test from Universidad 

Nacional de Colombia. The test had 5 subtest to measure respectively Textual, Math, Science, Social, and Image. 

Each subtest was unidimensional. However, all the items in the test are correlated and the dimension analysis 

reveals that the data have dimension 3. One can consider basically two types of classical models to fit the data. The 

first option is to consider a MIRT model. In this case, the dimension of the latent space is 3. However, in this case 

the cluster structure of the items and the fact that each cluster measures an unidimensional latent trait is omitted. 
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The second option is to adopt a simple structure model. In this case, it is assumed that the dimension of the latent 

trait space is 5. In both cases, the models are over parameterized. The MSMIRT model seemed to be a better 

option to fit the data. The statistical analysis of goodness of fit showed that the MSMIRT model fitted the data 

well. 

After fitting the data, we can explore an interesting characteristic of the MSMIRT model, which can be 

useful for the experts. When the first parameterization is used, some of the main latent traits can be identified with 

the basic latent traits. Consequently, the other main latent traits can be interpreted in terms of that latent traits. For 

example, in the current case, the main latent trait Social is a composite of Textual (85%) , Math (6%) , and 

Image (9%) . 

The MSMIRT model introduced in this paper seems to be more natural to fit data from tests designed to 

measures several specific latent traits, in which a cluster structure is available. The MSMIRT model is in general 

more parsimonious than the existing models. In the simulations, the responses were generated using MIRT 

models. However, the cluster structure of the tests and the fact that each subtest measures essentially a main latent 

trait were incorporated in the MIRT models. The results of simulations showed that the MSMIRT model fitted 

well the data in this case, so the classical MIRT model can be replaced by a MSMIRT model in these situations. 
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